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Numerical calculations by Drobyshevski & Yuferev (1974) of the redistribution of 
magnetic flux by a BBnard layer with cells of square planform have been extended 
to higher values of electrical conductivity and to other velocity patterns, using a 
computer code developed for another purpose. Reconnection does not proceed as they 
supposed, but leads to overall field enhancement, and although the energy is greater 
a t  the bottom, there is as much unsigned flux in the upper half as in the lower half 
of the layer. However, compressible velocity patterns can concentrate flux at their 
bases. 

1. Introduction 
Observation of the Sun reveals a magnetic field heavily distorted by the convective 

motions in the outer part of its volume. Estimates of magnetic Reynolds number R,, 
a measure of the importance of convection relative to diffusion, range from 106-1011. 
Such values are beyond the scope of terrestrial laboratory experiments, so the 
understanding of high-R, physics has mainly been increased by the use of both 
analytic and computational techniques (see the recent review by Proctor & Weiss 
1982). 

The solar field is believed to be predominantly toroidal (or horizontal if curvature 
is neglected) in the deep convection zone as a result of a-o dynamo action (e.g. 
Cowling 1982; Gilman 1982; but see also Gilman & Miller 1981). In the small scales 
of convective motion nearer the top of the zone, the supergranules and granules, 
isolated regions of hot rising fluid are observed to be surrounded by connected areas 
of colder falling fluid, so that the two are topologically distinct. It was suggested in 
a paper by Drobyshevski & Yuferev (1974, hereinafter referred to as DYM), with an 
appendix by Moffatt, that in this situation ‘topological flux pumping’ would act to 
confine the field to the deeper layers. 

This paper, using a computer code developed to solve the equations of magneto- 
convection (cf. Weiss 1981), extends the Russians’ numerical work to higher R, and 
considers another topologically similar velocity pattern denoted by SSW (after its 
authors’ initials). A parallel investigation in a slightly different geometry has been 
performed by Galloway & Proctor (1983). Since DYM was published, evidence has 
mounted that the deeper convective motions are roll-like, elongated in the direction 
of the rotation axis (Busse 1977,1978; Gilman 1975, 1980), and rolls cannot produce 
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asymmetries in the distribution of horizontally averaged flux (Arter 1983). As is well 
known, mixing-length theory predicts there are several pressure scale heights across 
the zone, so it is important to see what occurs when we relax the incompressibility 
condition div u = 0. We therefore also consider compressible roll-like motion pre- 
dominantly across magnetic field-lines as a model for these rotationally dominated 
flows, and take a corresponding motion around fieldlines as a model for situations 
where the magnetic field is relatively stronger. Such flows will be denoted by Cl and 
CII respectively. 

All four velocity patterns are described in $2, together with what may be 
analytically inferred about their effect on the distribution of magnetic field B. SSW 
is shown to produce a net upward transport of field at low R,; CL and Cll may be 
studied in a low-R, formalism which shows that C, sends flux upwards, CII flux 
downwards and there is no transport when motion is symmetric in the horizontal 
directions. This redistribution of flux by SSW represents the geometrical pumping 
effect (Proctor 1975), i.e. i t  depends on the detailed structure of the velocity field, 
not the topology. 

Section 3 describes the computational techniques used to solve the problem a t  
higher R,, and $4 the result obtained numerically. At larger R,, the SSW results 
are increasingly found to resemble those from the Drobyshevski & Yuferev (DY) 
pattern. This confirms that geometrical pumping is unimportant at high R,  (Proctor 
1975; Moffatt 1978, §3.12), when topological effects come into play. The result is not 
as anticipated by DYM, however, and roughly equal amounts of unsigned flux are 
seen in the top and bottom halves of the layer ($4.2) and the field is enhanced 
throughout much of the volume. The dominant magnetic energy feature is nevertheless 
a bottom flux tube ($4.3). Section 4.4 shows that the low-R, behaviour of Cl and 
CI, is also reproduced a t  higher R,. Section 5 discusses the numerical results in the 
context of dynamo theory, and further implications are discussed in $6. 

2. Analytic results 
2.1. Introduction 

The formal statement of the problem is to solve (for B) the magnetic induction 
equation, which in dimensionless form is 

i3B 
- = R, curl (u A B) + V2B, 
at (2.1) 

for a given velocity pattern u(x ) ,  with B = ( 1 ,  0,O) at t = 0, subject to the (periodic) 
boundary conditions ((2, y, z )  are Cartesian coordinates) 

B, = B, = 0 (X = O,h),  

aB, aB, 
a Y  aY 

- B, = 0 (y = O , A ) ,  -- 

-- aB, i3B 
- - = Bz = 0 ( z  = 0,1). 

a2 aZ 
Y Z  

0 0  
It follows that, if we define @(x, y, z )  = I B, dydz, 

and let Q0(z) = @ ( x , A ,  1)  then, provided that the normal component of u vanishes 
on the boundaries of the box 0 < x < A,  0 < y < A ,  0 < z < 1 ,  

(g - &)q0 = 0. 
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x 
FIQURE 1. Perspective view showing the two incompressible velocity patterns schematically. Initial 
magnetic-field direction is indicated by the dot-dash lines. The left-hand half of the volume spanned 
by the hatched base constitutes the ' quarter-cell of symmetry'. 

Since div B = 0, 
however much field may rearrange itself on a surface x = constant. 

is independent of x, implying that dj0 is conserved at all times, 

2.2 .  Incompressible velocity fields 

The two incompressible velocity fields studied in detail are poloidal, u = curl curl (Sa), 
and satisfy stress-free boundary conditions. They are shown schematically in figure 
1. We use a square planform because this provides the simplest representation of the 
observed small-scale solar convection. 

As in DYM, we put A = A = 1, and set 

S = ( c o s x x + c o s n y + ~ c o s n x ~ ~ ~ n y ) s i n n z ;  

alternatively, for the pattern given by H. U. Schmidt, G. W. Simon & N. 0. Weiss 
(private communication), 

S = (cosnx+cosny-~[cos2nx+cos2ny]) sinnz. 

These will be referred to as DY and SSW respectively. 
Obviously u possesses a symmetry about z = a. u , ( x , y , ~ )  for DY has relatively sharp 

maxima and rounded minima, vice versa for SSW (figure 2). Flowlines, solutions of 

are plotted in figures 3 (a,  b ) ,  which suggest they are closed. Ifwe write S = h(x ,  y) sin nz 
and seek functions F constant on streamlines of the form F = f ( x ,  y) sin nz, then f 
satisfies 

This equation is invariant under the transformation x + y + x ,  x - y + y .  It has 
solutions f = Z'(x)m'(y) if h ( x , y )  = l ( x ) + m ( y )  or h ( x , y )  = l (x)  m ( y ) ;  thus flowlines 
must lie on surfaces F = f ( x ,  y) sin nz = constant, where for DY 

f = sin nx  sin ny, 

f = (sin nx - a sin 2 x 2 )  (sin ny - 6 sin 2ny). 
and for SSW 
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FIGURE 2. u,(z, y, 4) plotted as a surface of entire cell for velocity patterns ( a )  DY, ( b )  SSW, (c) 
C,, and ( d )  GI. The left corner corresponds to the centre of the cell drawn in figure 1 ; the base plane 
is drawn a t  minimum u,, i.e. not at u, = 0. 

Additionally we may seek surfaces F ( x ,  y )  = constant. For DY, since ahlax, ahlay  
are separable functions of x ,  y ,  elementary manipulation gives 

sin X X (  1 - cos X X )  ( 1  + cos 7cy) 
sin ny( 1 - eos X Y )  ( 1  + cos E X )  

F =  = constant 2 0, 

and there is a similar expression for SSW. 

2.3.  Small-R, theory 
Assuming R,  6 1 ,  the steady solution of (2.1) may be expressed as a power series 
in R,, and the horizontally averaged magnetic field B, = B,(x) f derived (appendix 
to DYM). First we deal with the irritating matter of how best to define R,. We choose 
unit lengthscale and the maximum absolute value of dimensioned u, to be the velocity 
scale. Thus here R, is larger by the dimensionless peak value of u,, u,, = 3, than 
in DYM, and a further factor x greater than Moffat’s 8. 
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FIGURE 3. Stereo plot of quarter cell of symmetry (alignment illustrated in figure 1) showing 
streamlines of u for (a) DY, (b) SSW and ( c )  C,,. 

With this choice of R, we have for DY 

3(28cosn:z-3cos3nz)+O(R&),  (2 .2a)  

and for ssw 
423 R ,  

B,(z) = 1+ cos2nz- ( c o s n ~ - c o ~ 3 n z ) + O ( R ~ ) .  (2 .2b)  

2-2 
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The crucial result is the different sign of the coefficient of R& cos RZ in SSW, implying 
that flux rises rather than falls, although the whole term vanishes at  z = 0,  1 , unlike 
in DY. These transports represent the geometrical flux-pumping effect. 

2.4. Large-R, theory 

This is more difficult, and no fully three-dimensional results have been derived 
(Childress 1979). We expect (Moffatt 1978) a flux tube of thickness O(R2) to develop 
along the x-axis. Asymptotic theory shows that an initially 0(1) magnetic field is 
concentrated by a velocity field, (a) in two Cartesian space dimensions (x, z )  into 
structures with form 

and (b)  with axisymmetry, coordinates ( r ,  z ) ,  into 

Writing the steady induction equation as u A B- R;I curl B = grad $, we see that 
when $ E 0 there is an approximate solution of the form 

B = P(R$x)  U- RK-’[V’P(R$X) + b(R2 x)] (2.5) 

for any p and function P, provided that u A b- curl‘ b = 0. (A single prime denotes 
differentiation with respect to the function argument). By analogy with (2.3) and (2.4) 
we expect p = 8, and for p < 1 the term in u dominates. Then div B = 0 and div u = 0 
together imply u-grad B = 0: not only is each fieldline identical with a flowline, but 
lq/[ul is constant along each line. Note that this last result necessarily fails for 
compressible flow. 

Another useful result concerns = @(z, A ,  z ) :  

where j = curl B. In the large-R, limit, provided that B does not vary too rapidly 
on the line of integration, the second term is negligible. Now, if ux = 0 and u, is 
everywhere negative on a surface (for DY, SSW this is the case for x = A ) ,  steady-state 
B, must change sign on lines z = constant, and indeed on every path outside 
boundary layers of B joining two opposite edges of a face. This point will be further 
discussed, but for the moment we remark that DYM do not consider the possibility 
that B, may change sign. 

2.5. Compressible velocity $etas 

We generalize the velocity fields of 92.2 by writing v(z )  for sin xz. To satisfy 
divu = euz, i.e. to give an anelastic velocity field in the density distribution 
p(z) = exp (-cz), we must add a term to u so that 

u = curl curl (g(x, y) v(z )  2 )  + c grad (g(z, y)) v(z). 

To within a positive normalization factor, the second-order term Bt(z) in the 
expansion of B,(z) is found to satisfy 

where A denotes -V2 and angle brackets horizontal averages. 
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The term in c (zero for incompressible flows) shows an asymmetry in the flux 
transport - velocity cells extended along the fieldlines will send flux in the opposite 
direction to those extended at right-angles to the field (the effect vanishes for cells 
of square planform). Setting v(z) = sinnz (a cubic sine could be used to make the 
velocity satisfy stress-free boundary conditions, but this should not be significant), 
g(x, y) = cosnnx+cosmny, shows that field goes up in the first case. We denote the 
patternwithn = 1 ,  m = 2 byCII,  and that with n = 1, m = 4 byG,(Gf: n = 2, m = 1 
will also be discussed in $4.4). Flowlines of CII are plotted in figure 3 (c); C, is similar 
(Cf identical) but oriented differently with respect to the initially imposed field. As 
in $2.2 the streamlines can be shown to be closed: they lie at the intersection of 
surfaces 

sin mnx sin nny v(z) exp (cz) = constant 
and 

ltan&nyln2 ltan@nxz(-m* = constant 0. 

3. Computational Techniques 
3.1. Numerical methods 

As in two dimensions, the induction equation may be solved numerically by using 
centredhite-difference schemes, with the DuFort-Frankel representation for diffusive 
terms (Roberts & Weiss 1966). The problem can then be naturally expressed in terms 
of a parallel numerical algorithm O ( N ) ,  where N is the number of mesh points used. 

The ICL DAP (see e.g. Hockney & Jesshope 1981) provides a cost-effective means 
of handling such problems, and DAP-FORTRAN a natural means of coding them. 
If the degree of parallelism of the computer P < +N (and for the DAP P = 4096), it  
is possible to exploit the symmetries of the difference scheme (S. F. Reddaway, 
private communication) so that use of a leapfrog method, where only alternate points 
are updated at each timestep, causes no loss of efficiency. 

As a feasibility study, a straightforward code independently updating primitive 
variables B,, B, and B, was written. This with y- and z-dependences separately 
suppressed was successfully checked for R, = 0.1, l  and 100 against a two-dimensional 
code run on a serial computer. A computation with x-dependence absent was by error 
started from a state with divB + 0, but (as must be the case when div u = 0) a 
uniform field was the outcome. Indeed for the fully three-dimensional runs, if 
r = JdivnB~,,,/~B~,,,, where divn is the second-order centred-difference form of the 
divergence, then using single-precision computer arithmetic r 5 lop5 was observed a t  
all R, for runs starting with divn B = 0. It becomes obvious with hindsight that divn 
B is subject purely to decay. Thus it is unnecessary to constrain it explicitly, and 
this code was used for all the runs described in $4. The mesh size was 24 x 24 x 24 
( N  = 13824), representing one-quarter of a convective cell, except for C ,  and Cl,, 
where 24 x 48 x 24 and 24 x 12 x 24 meshes respectively were used. (A run was also 
made with a 16 x 16 x 16 mesh as a check.) One timestep typically took 0.16 s and 
each run 1000-2000 timesteps. The DAP is being enhanced so that it will soon be 
possible to use a 60 x 60 x 60 mesh. 

3.2. Presentation of results 

It is difficult to know how best to  visualize fully three-dimensional vector fields. We 
can look at selected fieldlines in two-dimensional sections (Galloway & Proctor 1982, 
hereinafter referred to as GP), but there is no clear choice for such a plane here, apart 
from the boundaries, in terms of symmetries of B. It is therefore necessary to  project 
from three dimensions. Fortunately the GINO-F package (Computer Aided Design 



Nominal 

3 
5 

10 
25 
50 

100 
150 
200 

DY 

3 
6 

12 
24 
48 
96 

144 
192 

ssw 
2.7 
5.3 

10.7 
21.3 
42.7 
85.3 

128 
170.7 

TABLE I. Exact values of R,, defined in terms of peak velocity uzm, 
used in the numerical calculations 

0 1 2 3 
( B , )  

FIQURE 4. Plots of B&), horizontally averaged Bz, for velocity patterns (a) DY and ( b )  SSW 
with R, up to 50. The values of R, are marked on the curves. 
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33 

FIGURE 5 .  Stereo plot of the volume spanned by the base shown hatched in figure 1, showing 
lines of B for the steady-state R,  = 25 in (a )  velocity pattern DY, ( b )  velocity pattern SSW. 

Centre, Cambridge) can handle the transformations involved, although it lacks 
facilities for hidden-line removal. Such a line-tracing code is then easily derived from 
GP’s two-dimensional graphics, and stereo pairs may be produced. 

Stereopsis is discussed in, for example, Gaunt & Gaunt (1978). Stereo viewers are 
helpful - a good deal of practice may otherwise be required to achieve the effect, and 
an unlucky ten percent of the population fails even with aids. The principle is to 
present two slightly different images of an object, corresponding to the views that 
would be seen by each eye independently if the object were, say, 25 cm away. Holding 
a stereo pair at about 15-30 cm distance, one half before each eye, stereopsis is 
achieved by relaxing the eyes so they focus on infinity. The observer in effect goes 
cross-eyed in such a way that two (of what would be four) images overlap. This 
(central) image, which may first appear out of focus, gives an accurate impression 
of depth. 

Fieldlines can give a crude indication of field strength, but only when started from 
points equispaced throughout the cube volume. It proves useful to  plot energy 
surfaces (again using GINO-F), which also facilitates comparison of output at 
different R,. Attempts to  simulate optical depth tracers, but using one primary 
colour for each of (three) intensity ranges, proved unsuccessful, partly owing to 
inadequate display hardware. The use of colour, to  distinguish fieldlines and different 
energy levels viewed in projection, is extremely useful, but sadly too expensive to 
reproduce in this journal. The general graphical problem would repay further study. 
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FIGURE 6(a-c). For caption see facing page. 
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FIGURE 6. Stereo plot of the quarter-cell of symmetry, showing surfaces where energy 
E( = P) = constant for R ,  = 100 a t  intervals of time to, starting a t  time to. In, for example, (a), 
the higher energy surface E = 5 is disconnected: parts lie in the bottom near corner and the top 
left corner. The surface E = 25 appears in (6) in the near corner, and for the sake of clarity E = 1 
is not shown in ( c )  and (d). The corresponding velocity pattern is DY. 

4. Detailed numerical results 
4.1. Lower magnetic Reynolds number 

The computations presented in this subsection are for R, d 50. Throughout i t  and 
ss4.2 and 4.3, nominal rounded values of R, are given, to facilitate comparison 
between the different velocity patterns considered - the exact values used (definition 
in 2.3) are listed in table 1. 

At these lower values of R,, diffusion dominates and the equilibrium magnetic-field 
structure is little changed from its initial uniform state. This is also the range covered 
by DYM. For comparison, the steady values of B,(z) (the horizontally averaged 
x-component of the magnetic field) for the DY velocity pattern are plotted in figure 
4(a), for R, up to  50 - the equivalent of R, = 16 in DYM. This reveals excellent 
agreement between solutions obtained using two quite different numerical schemes. 
I n  addition, note the development with increasing R, of asymmetry about z = 4 in 

I n  contrast, for SSW, B,(z) is approximately symmetric until R,  = 50, as shown 
in figure 5(b). The difference is expected by inference from the analytical results in 
s2.3. Figure 5 demonstrates that, before reconnection sets in, the broad, disjoint 
regions of rising flow in SSW are able to transport almost as much flux upwards as 
the narrower but linked regions of falling flow take down. 

We conclude that topological effects are relatively unimportant at low R,, and i t  
is the detailed geometry of the flow which determines the B,(z) profile. This was 
suspected by Proctor (1975). 

BO(2). 

4.2. Time-dependent behaviour 
Each computer run was started from a state with uniform horizontal magnetic field, 
and maximum values of B,, B, and B,, plus the total magnetic energy Etot were 
printed at each timestep. Almost without exception they increased monotonically 
toward the final steady state, and ultimately reached it exponentially on a diffusive 
timescale. 

The runs with velocity patterns DY and SSW for R, = 100 were studied in more 
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FIGURE 7(a-d). For caption see facing page. 
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FIGURE 7 .  Stereo plot of fieldlines for R, = 100, a t  intervals of time t o .  (a)  is drawn at  time to.  (a)-(c) 
have fieldlines started at points on the face x = 0; (d)- (g)  have lines started at points near the lower 
right-hand centre, inside the flux tube a t  x = 1 ; (d) ,  like (c ) ,  is drawn a t  time 3t0. Corresponding 
velocity pattern is DY. 

detail: the B-field was saved a t  intervals of to = l /uzm.  (There is no unique definition 
of turnover time for the eddies - this is the smallest possible choice,) After time 2to 
the magnetic energy density E-contours already show greater concentration at the 
bottom of the cell (figure 6), and at time 3t, the flux at the top is significantly reduced, 
havingpeaked a t  time 2to, when the whole vertical distribution was nearly symmetric. 
By time 3t0 the field has bottlenecked in the volume where fluid rises - fieldlines have 
become so distorted there that rising field is reduced due to diffusive losses (see figures 
7a-c). Other fieldlines may lie entirely in a region of falling fluid; less distortion 
accompanies their downward transport, which is thus more efficient, and flux builds 
up a t  the cell bottom. This corresponds, so far, to  the description in DYM of 
‘topological pumping’. In  this way, on a timescale of order of the turnover time, a 
bottom flux tube develops. 
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Reconnection however now begins, and not in the manner described in DYM. 
Instead of loops forming in the upper part of the cell by reconnection in or near the 
rising fluid, fieldlines merge in the falling fluid, leaving a nearly horizontal line plus 
a loop as much in the lower as in the upper part of the flow (figures 7d,e).  
Reconnection is largely finished by time 6t0 at R, = 100 (figures 7f,g). The field near 
the centre is reduced by being whirled away, by what locally amounts to a 
displacement. 

Other lines are twisted into helices by the flow, in the same way that rotating a 
circular cylinder of variable radius, placed obliquely across a sticky string with free 
ends lying on a horizontal table, winds that string into helices (figure 7 f , g ) .  The 
velocity pattern may be conceived as the cylinder bent to form a toroid centred on 
the set of interior points where u = 0, i.e. the cell axis. 

The key feature is that motion is mainly oblique, but not perpendicular, to the 
imposed field: there is no analogue of the spirals in the two-dimensional problem 
(Weiss 1966), and the 3-dimensional vertical field problem (GP) shows little loop 
formation. A further distinction is that, for rolls, reconnection mainly occurs 
internally, not a t  the (cell) boundaries. Compare also the rotating-sphere problem 
(Parker 1966) in which the neutral points migrate inwards as the steady state is 
approached. 

One last feature also noticed by Galloway & Proctor (1983) is that, as t is increased 
at  constant R,, Bo(z) reproduces quite closely the steady-state profiles found a t  lower, 
but increasing, R, : the low-t, high-R, results are similar to the low-R, results at large 
times. We may crudely demonstrate the equivalence using the approximation 16BI 4 1 
(cf. the quasilinear approximation). We find for small t that B, varies as eRmt, but 
it remains somewhat mysterious that the equivalence apparently holds at larger 
times. 

4.3. Steady states at high R, 
The steady field structures for DY and SSW are very similar at high R,, as reflected 
by the Bo(x) profiles in figure 8, indicating that geometrical effects are no longer 
important. The dominant feature of the results is a bottom flux tube running along 
the x-axis, parallel to the applied field and dividing the (entire) cell bottom into two 
(figure 9). Analysed in detail, it shows a Gaussian profile near x = 1, as would be 
expected from $2.4. However, DY is not locally axisymmetric, unlike SSW, so that 
the fall-off is more rapid in one normal direction than the other. In either flow, of 
course, as x decreases, the tube cross-section becomes more elongated in the vertical. 
The structure at x = 1, comparing R, = 50, 100, 150 and 200, asymptotes to 

where for SSW L x M x 1.7,  and for DY L x 2.0, M x 1.4. 
The 8 power-law dependence is surprising, particularly as this implies a positive 

flux along the tube O(B, R;l) - O(&,). The net flux Go across any plane x = constant 
is, though, constrained to be exactly unity, so there must be a negative flux O(&,) 
to compensate. 

The energy contours in figure 9 show the development of a splayed feature at the 
top of the layer. We expect from (2.3) that as we follow fieldlines from the tube to 
this region and the field spreads out in the y-direction, its intensity will be reduced 
by O(@,) to O(R,). The field direction is reversed (figure lo), and, to make Go = 1, 
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FIGURE 8. As figure 4, but for R, = 50-200. 
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FIQURE 9. Stereo plot showing surfaces of constant energy E = 25, 125,625 plotted for the steady- 
state field in the velocity pattern SSW with R, = 200. The surface of highest E is innermost at the 
bottom near corner. 
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i 

FIGURE 10. Stereo plot showing steady-state field in the velocity pattern SSW for R, = 200 with 
(a) fieldlines started on the surface x = 0, and ( b )  started at  points inside the flux-tube at  x = 1. 

must occupy an area O ( R 2 ) .  This is consistent with the numerical results, and indeed 
the flow near the top locally resembles that used in deriving (2.3) for the flux sheet. 

It is necessary to sound a note of caution here: we may not be in the asymptotic 
regime as e.g. Etot = O(Rk3) rather than O(R&) as suggested by (4.1). Also, R, = 200 
may not be fully resolved by the 24 x 24 x 24 mesh : the large size of B, means, since 
div B = 0, steep gradients in B,, B,, and these components vary too rapidly in the 
tube. There may be more surprises in store a t  still higher R,. However, Galloway 
& Proctor (1983) have performed similar computations for cells with hexagonal 
planform and found comparable behaviour for R, up to 800. 

The presence of closed loops of flux, at first sight rather mysterious, is a 
consequence of (2.6) and the imposed symmetry ($2.1). Without this symmetry there 
would be a component of B normal to the plane of the loops, which would turn them 
into helices. 

Much of the fieldline structure can be explained by (2.5) and its consequences. On, 
say, y = 0, IBI mainly increases monotonically from its value a t  the cell axis, whereas 
1u( peaks a t  a distance, being zero on the axis by definition, and vanishing a t  the corners 
of the box. We see in figure 10 that the variation in helical radius as fieldlines are 
followed away from near y = 0 is consistent with conservation of IBl/lul along their 
length, as predicted by (2.5) a t  leading order. Encouraged by this agreement we 
remark that, if lines of u lie in a plane and are closed, (2.5) with b = 0 is the equation 
of a helix with O(R&) turns per unit length, where it is likely that p = 8 ($2.4). Thus 
the enhanced flux is a consequence of an originally straight fieldline contributing 
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. _  , . .  . . .. 
FIGURE 11. As figure 9, but the only energy surface plotted is E = 1, 

and the velocity pattern is DY, R,  = 200. 

2dimensional 

0 1 
@ 

FIQURE 12. GV = B,dV, where V is the volume z < 5 < 1, for typical 3- and 2-dimensional 
SV velocity patterns, R,  = 150. 

O(&,) times as i t  twists from x = 0 to x = 1, a point first realized intuitively by 
Proctor (private communication). 

Finally, we ask to what extent is flux expelled from the flow? From figure 11 we 
see that the magnetic energy is low near the cell axis. This is merely a reflection of 
IBI - IuI, however, and there is a substantial amount of horizontal flux throughout 
the rest of the central part of the layer - indeed lBzl = 0(1) close to the axis. The 
contrast with the flux distribution found for a velocity pattern consisting of 
two-dimensional rolls is very striking (figure 12). Of course the field outside the 
principal energy features is probably relatively as weak as in the two-dimensional 
calculations, but these results suggest that  i t  does not vanish as R, + 00. 

4.4. Steady states in compressible $ows 

At high R, the steady-state distributions of magnetic field in the velocity patterns 
CI and C,, differ markedly from each other, and from those discussed in 54.3. The 
essential features of all the steady states are, however, formed on a turnover 
timescale. 

We see from figure 13 that in C,, , where flow is predominantly around the direction 
of the imposed field (figure 2 c ) ,  the lines of B are only slightly bent at R, = 100, 
whereas in C, at the same R,, their distortion is large and loops have formed, 
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FIGURE 13. Stereo plot showing steady-state fieldlines at R, = 100 for the 

velocity patterns ( a )  C,, and ( b )  GI. 

consistent with the analysis presented in $2.4. The energy contours in figure 14 
suggest that flux has been transported upwards by C, and downwards by CII , as would 
be expected from (2.7). This is confirmed by the plots of B,(z) in figure 15. 

It seems that, as in SSW and DY, there is enough motion oblique to the imposed 
field in C, (which, after all, is only elongated by a factor of two in planform) for flux 
enhancement to occur. Nevertheless, examination of the upper energy feature shows 
it to be tubelike, with a slow variation of exp ( - z2)-form, and, as R ,  increases, 

B, - R, exp [ - R m ( d  + g)] 
for some L, M (cf. (2.3)). In addition, the total magnetic energy Etot = O(R,); there 
is no evidence for an enhancement factor greater than O(1).  It may well be that 
R, < 100 is not in the asymptotic regime. 

The energy structure in Cil (figure 14b) is still more mysterious. Although a t  first 
sight it resembles a flux sheet, it  does not have the exp ( -z2)-type dependence. 
Indeed, the maximum value of energy is at z = 0.25 (on the left edge z = 0, y = l),  
rather than on the bottom plane z = 0. Looking at the variation with R, suggests 
that peak B,, 

Bxm = O(lnR,), 
and Etot = 1.88+O(R;'). 
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FIGURE 14. As figure 9, but for R,,, = 100, and surfaces plotted are (a )  E = I ,  5, velocity pattern Cll ; 
(b )  E = 10, 100, 1O00, velocity pattern C,. In (b )  the contour of highest energy is nearest the top 
far edge. 

It must, however, be pointed out that asymptotic results for Cl, are derived by 
considering only R, = 50, 100, 150 and 200: other, more complex, R,  dependences 
are possible. Sadly, the mesh used, which has only 12 points in the y-direction, does 
not adequately represent B(x)  when R ,  > 200. 

Hoping that calculations a t  higher R, will confirm the above formulae, we also 
have for the minimum of B,(z) 

B , ( l )  = 0.17+O(Rk1). 

This strongly suggests that the ratio of the flux in the lower half of the layer to that 
in the upper will, as R ,  increases, stay near the value of 5:  1 seen at R ,  = 200. 
Decreasing c, equivalent to having more pressure scale heights across the layer, might 
lift this ratio further, but there is a competing geometrical effect, namely the 'roll' 
axis moves down to a height z, = -n7C1tan-1c-1. Incidentally, since c = - 1 gives 
z, = f, it  is not too surprising that the flux is mostly found a t  the top in Ck 
Presumably the bottom feature will mimic the top one as R,+co, although 
containing O( 1) less field. 

What really needs explanation is the downward transport of flux by Cl,. Now when 
c = 0, B,(z) is symmetric with respect to z = 4, so compressibility must be the key. 
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FIGURE 15. As figure 4: but drawn for velocity patterns (a )  C,, and ( b )  CI, for R, up to 100. 

If we expand the second term of the induction equation (2.1) we find 

curl(u A B) = -(u’grad)B+(B.grad)u-Bdivu, 

where by construction div u = - cu,. Thus when c < 0 there is an additional term 
K ( -uz) B, which implies field growth where u, < 0, i.e. in descending flow. The 
increase in field strength is due to  the concentration of the fluid with which the field is 
linked, or ‘frozen to’ in the limit R,+ co (Drobyshevski 1977; Moffatt 1978, chap. 3). 

We should like to  have shown that different directions of flux transport are 
produced simply by changing the alignment of the (compressible) convective pattern. 
The rotation of C,,, C4, was studied, but the mesh could not resolve field structure, 
which a t  R, = 100 nevertheless resembled that of C, (which is not resolved for 
R, > 100). The available evidence supports the conclusion that only a change in roll 
orientation is required to  reverse the flux transport. 
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5. Relation to dynamo theory 
The generation of net unsigned flux in @4.2 and 4.3 leads us naturally to think 

of dynamo action, and particularly of the definition given by Hide (1979) in terms 

of N ( t )  = IB.dS(. The boundary conditions on Bemployed in this paper are however 

not such that we can safely call the DY velocity pattern a (semi)dynamo. Indeed, 
although Parker (1982) provides a simple model of a similar flux-generation process, 
for which he claims dynamo action, altering the boundary conditions to ones like those 
employed by dynamo theorists can drastically modify the behaviour of the system 
(Parker 1975; Arter, Galloway & Proctor 1982; Galloway & Proctor 1983). 

We shall instead talk of flux enhancement, defined in the following way (after Hide 
1979). Let S bound an entire convective cell (see figure 1 ) .  Then the fluid motions 
in the cell are said to  enhance a flux of initially uniform field N ( 0 )  = N o ,  if N* > 0 
and N*(t )  *O as t +- co, where N* = N ( t )  -No.  

It is important that  S be just that  surface. Near x = 0, there is a layer where B, > 0 
for all y and z ;  thus there are always surfaces for which N* = 0. Further, although 
in two dimensions N* is non-zero away from cell boundaries (e.g. Weiss 1966) N 
remains 0(1), whereas here N increases to  O(&,). 

The small-R, results (2.2) and (2.5) should also be looked at in the context of 
mean-field dynamo theory (Krause & Radler 1980). The asymmetry in (2.2) corres- 
ponds to a third-order correlation (here meaning a non-zero horizontal average) in 
u,  the so-called y-effect term, that of (2.6) to a second-order correlation described by 
Vainshstein (1978). Strictly speaking, Vainshstein uses the quasilinear approximation 
to derive high-R, results, a procedure which is open to criticism (Parker 1979, chap. 
17). The second-order a-effect term normally studied is zero, since by construction 
(uscurl u )  = 0;  there is no net helicity after horizontally averaging, in any of the 
velocity patterns studied in this paper. 

It is hard to relate the high-R, results to  the work of Krause & Radler (1980), 
because the separation of scales required by mean-field electrodynamics does not exist 
in the vertical. If, following Drobyshevski, Kolesnikova & Yuferev (1980), we evalu- 
ate E = - ( u  A B )  = (0, E,(z), 0) we find that in the steady state E,  = Ri1dB0/dz 
(except for regions near z = 0 , l  of thickness some negative power of R, in DY, SSW), 
a result which might have been anticipated. Before the final state is reached, E,  and 
B, or its derivatives are not in simple proportion. 

I, 

6. Conclusion 
This study has shown that, for incompressible flows, topological effects dominate 

geometrical ones as R, increases beyond about 50. It has provided more detailed 
discussion, with simple analytic explanations for the gross features, of results 
previously announced in abbreviated form by Arter (1982) and Arter et al. (1982). 
These are the generation of net unsigned flux in the form of loops and helices, and 
the consequent rebuttal of Drobyshevski & Yuferev’s contention that all the flux is 
expelled from the top of a convecting layer. The proportion of field energy there does, 
however, become negligible as R,+oo, since i t  resides in a sheet, whereas there is 
a flux tube a t  the bottom. 

The results for compressible flows are new. Roll-like motions with axis parallel to 
the imposed field can confine about 80 yo of the flux a t  their base : making the ‘roll’ 
axis normal to the field sends flux upwards. In  the former situation the dominant 
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mechanism appears to be field increase owing to the compression of the fluid that the 
fieldlines are ‘frozen to’. In either case, it does not seem that flux can be wholly 
removed from half of a layer. Some of the field structures also remain enigmatic - it 
would be desirable to check the large-R, behaviour by using larger grids when the 
computing power becomes available. 

The implications of the incompressible results are not entirely clear. Assuming for 
the moment that we have here a good model of solar convection, which will be the 
more important for the global dynamo action, the flux or the energy in the magnetic 
field? Childress (1979) indicates that the a-effect due to flux sheets in a Cartesian 
geometry at  high R, is smaller than that due to flux tubes in an axisymmetric 
geometry; thus perhaps we should still expect the dynamo to be found at  the base 
of the convection zone, as suggested by Galloway & Weiss (1981). (Although of course 
the velocity patterns discussed here have no net helicity, which, if included, could 
somewhat alter the picture.) 

As for the validity of the model, the top boundary condition which does not allow 
field to escape was criticized by Parker (1975), and dropped for the reply (for R, up 
to 50) produced by Drobyshevski et al. (1980). Unfortunately the method used here 
is not easily modified to repeat these latter calculations. Indeed, changing the 
boundary conditions can greatly affect the results. Galloway & Proctor (1983) impose 
a current-free atmosphere above the layer, and find that the magnetic flux decays, 
although on a long timescale O(&. Drobyshevski et al. (1980) additionally use the 
current-free condition underneath, to discover that flux is more completely expelled 
from the upper part of the layer than in DYM. This should be further studied. 

The compressible results have shown up a process which could act rather 
imperfectly like flux pumping as originally envisaged by DYM. There are two likely 
alignments for a roll axis in the solar convection zone - parallel t o  the rotation axis 
and parallel to the predominantly toroidal field. The first will be preferred where the 
field is relatively weak and (cf. C,) send flux upwards, the second only where the field 
is strong and (cf. C , , )  the motion will confine it, in agreement with Vainshstein (1978). 
However, for the latter to happen in the Sun the field would be so large that magnetic 
buoyancy would also be importmt (Parker 1979). Its  effect should therefore be 
included in any realistic calculation. 

The same remark applies to sunspot penumbrae, where convection takes place in 
a mainly horizontal field (Danielson 1961 ; Mclntosh 1981). If the compression 
mechanism is dominant, we would expect to see magnetic field in regions of falling 
fluid. This process would then also reduce upward field loss from the penumbrae. We 
are on safer ground when we take DY, SSW or C ,  as model for the giant-cell solar 
convection - the implication is that flux enhancement may help to explain the 
persistence of the large-scale magnetic features (see McIntosh 1981) ; cf. also Parker 
(1982). 

Finally, we remark upon the variety of behaviour possible in just four simple 
velocity fields. Since solar observations do not greatly constrain the choice of flow 
pattern, study of the fluid-dynamical problem, including a Lorentz-force term, might 
be a faster road to an understanding of the physics of solar convection. Work on such 
a problem, although neglecting magnetic-flux buoyancy, is currently in progress. 

Thanks are due to Drs M. R.  E. Proctor, N. 0. Weiss and D. J. Galloway for useful 
and enlightening conversations. I wish also to thank the staff in general, and Dr 
G. S. J. Bowgen in particular, at DAPSU, Queen Mary College, London, for advice 
and assistance, and the SERC for both a studentship and time on the DAP. The 
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output of the DAP runs was analysed on the IBM 370/165 and IBM 3081 of the 
Cambridge University Computing Service. 
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